If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-10x-15=0
a = 6; b = -10; c = -15;
Δ = b2-4ac
Δ = -102-4·6·(-15)
Δ = 460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{460}=\sqrt{4*115}=\sqrt{4}*\sqrt{115}=2\sqrt{115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{115}}{2*6}=\frac{10-2\sqrt{115}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{115}}{2*6}=\frac{10+2\sqrt{115}}{12} $
| 325*24=x*40 | | 1800*0.04=x*0.02 | | 3x+1+2x-6=90 | | 6x-11=-2x/5 | | X+5/18=2/9+x-1/2 | | X+2/10=1/5x+x-4/3 | | 60+44+43x-10=180 | | 2t-15+4t-15+t+20=180 | | 3000*9=x*81 | | 6x+2+x+15=90 | | 2x+12+7x-6=90 | | 2x+12+7x-6=180 | | 10y-27+5y-14+y+33=180 | | 8x-16+4x+20=90 | | z+13+z-6+80=180 | | 5x-11+4x+11=180 | | 3b+4+50+83=180 | | 2b-50+3b-33+b-7=180 | | 78.4=4.9t^2 | | 2b-50+3b-50+b-7=180 | | w-42+2w-31+34=180 | | 2b-26+4b+b+3=180 | | 2b-26+2b+b+3=180 | | 5x-14+4x+4=180 | | X=1/3x180-x | | 2a+14+6a+19+a+18=180 | | 19(9x-1)-16=169x+19 | | p+21+54+43=180 | | 5(y+6)=5(y-2) | | 4a+30+4a+6a+10=180 | | 26-12=2(x-9) | | 2s-25+30+3s=180 |